
Fast update algorithm for the quantum Monte Carlo simulation of the Hubbard model

Phani K. V. V. Nukala,1 Thomas A. Maier,1 Michael S. Summers,1 Gonzalo Alvarez,1 and Thomas C. Schulthess1,2

1Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6164, USA
2Institut für Theoretische Physik, ETH Zürich, 8093 Zürich, Switzerland

�Received 21 April 2009; revised manuscript received 8 October 2009; published 17 November 2009�

This paper presents an efficient algorithm for computing the transition probability in auxiliary field quantum
Monte Carlo simulations of strongly correlated electron systems using a Hubbard model. This algorithm is
based on a low rank updating of the underlying linear algebra problem, and results in significant computational
savings. The computational complexity of computing the transition probability and Green’s function update
reduces to O�k2� during the kth step, where k is the number of accepted spin flips, and results in an algorithm
that is faster than the competing delayed update algorithm. Moreover, this algorithm is orders of magnitude
faster than traditional algorithms that use naive updating of the Green’s function matrix.

DOI: 10.1103/PhysRevB.80.195111 PACS number�s�: 02.70.Ss, 71.27.�a, 71.10.Fd

I. INTRODUCTION

The description of solids at the atomistic level is compli-
cated due to the interaction among many of its constituents,
namely ions or electrons. The corresponding solution of the
quantum many-body problem is cumbersome and becomes
computationally intensive, if not intractable. Consequently,
simplified models are in common use to gain valuable insight
into the description of solids. An important model for de-
scribing strongly correlated electron systems is the Hubbard
model,1 which describes interacting electrons in narrow en-
ergy bands, and which has been applied to problems as di-
verse as high-Tc superconductivity, band magnetism, and the
metal-insulator transition.

In the Hubbard model,1 the Hamiltonian has the form

H = − t�
�i,j�

ci�
† cj� + U�

i

ni↑ni↓, �1�

where t is the hopping integral and U is the on-site Coulomb
repulsion. The fermionic operators ci�

† and �ci��, respectively,
create and destroy an electron on-site i with spin �, and
ni�=ci�

† ci� is the corresponding number operator. The first
term describes the hopping of electrons between nearest
neighbor sites i and j, as denoted by �¯ �, and the second
term describes the on-site Coulomb repulsion between two
electrons. In the above form, the Hubbard model describes
the competition between �i� itinerancy as described by the
hopping term, and �ii� localization as described by the on-site
Coulomb repulsion term.

Traditionally, the Blankenbecler-Scalapino-Sugar �BSS�
quantum Monte Carlo algorithm2,3 has been used to solve the
Hubbard model on a finite lattice. Important progress has
been made recently in simulations of the Hubbard model
using dynamical mean field �DMFT� and quantum cluster
simulations.4–6 The numerically expensive part of these
simulations is the solution of an embedded cluster problem.
Quantum Monte Carlo methods such as the Hirsch-Fye aux-
iliary field algorithm7 and the recently developed continuous
time diagrammatic methods8,9 allow the solution of large
clusters. In the following, we will use the Hirsch-Fye �HF�
cluster quantum Monte Carlo �QMC� method10 to illustrate
the new algorithm, and note that its application to the BSS

QMC algorithm2 is straightforward, given the similarity of
the equations for the transition probability and the Green’s
function updates3 to those in the Hirsch-Fye algorithm.

The cluster HF-QMC algorithm employs a path-integral
formalism on a space- �imaginary� time lattice of size N
=NcNl, where Nc and Nl represent the cluster size and the
number of time slices �time steps� used in the path integral,
respectively.10 The canonical Hirsch-Hubbard-Stratonovich
�HHS� transformation11 is used to replace the interaction
term in the Hamiltonian with a bilinear term and an addi-
tional sum over auxiliary degrees of freedom �known as the
HHS field� at every point in space time. The HS spin fields
are integrated using a Monte Carlo method that sweeps
through the space-time lattice by attempting to flip the HS
spin at each of the lattice sites. This local change �flipping of
the spin at site p, i.e., sp�−sp� from configuration � to �� is
accepted depending on the ratio r� given by

r� =
�����
����

=
det G↑

−1����det G↓
−1����

det G↑
−1���det G↓

−1���
= R↑R↓, �2�

where � is a density matrix that describes the weight of a HS
spin configuration, G is the Green’s function matrix of size
N�N and R� with �= ↑ ,↓ defines the ratio of fermion de-
terminants as

R� =
det G�

−1����
det G�

−1���
. �3�

Using this model, the simulation proceeds by visiting
each location of the lattice and proposing a local change
�event�. The probability that the change is accepted is based
on the ratio r� in Eq. �2�, which requires the computation of
the determinant of the Green’s function matrix G�

−1���� in
the �� configuration. The configuration �� is accepted with
probability r=r� / �1+r�� �heat-bath algorithm�. That is, the
proposed local change is accepted and the system configura-
tion changes from ���� when an arbitrarily chosen random
number is less than r. If not, the local change is rejected and
the system remains in configuration �. Each time a local
change is accepted, the Green’s function matrix G��� is
modified to G���� by a low-rank update and the simulation
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proceeds through proposing a local change, which requires
the recomputation of the determinant of the modified Green’s
function matrix G���� in the subsequent configuration ��.
This progression of simulation through local changes pro-
ceeds for many steps until the observables converge to the
desired accuracy of the Monte Carlo procedure.12

Large scale simulations using the Hubbard model have
often been hampered due to the fact that ratios of fermionic
determinants R� need to be calculated for every proposed
spin flip, and the Green’s function matrix needs to be up-
dated whenever the proposed spin flip is accepted. In typical
quantum cluster calculations,5 a significant part of the simu-
lation time is spent in computing and updating the successive
Green’s function matrices. Traditionally, the Sherman-
Morrison formula13 is used to update the Green’s function
matrix �see Eq. �4�, which requires O�N2� computations,
where N is the size of the Green’s function matrix�. These
traditional algorithms that employ repetitive computation
techniques, wherein the linear algebra subproblem
�Sherman-Morrison update� is repetitively computed during
each of the simulation steps, pose a significant computational
challenge even for modern supercomputers since a large
number of MC steps are required to solve the problem. In a
typical Monte Carlo based simulation, the number of succes-
sive Green’s function updates or steps, Nsteps, is of the order
of millions and increases with increasing lattice system sizes.
In addition to the limitation due to the infamous fermion sign
problem, it is for this reason that simulations of large lattice
systems are not possible despite the fact that such large scale
simulations are necessary to develop a better understanding
of relevant physics.

However, since each of the successive Green’s function
matrices differ by a low-rank update, an updating scheme of
some kind is likely to be more efficient than employing a
repetitive computational technique �Sherman-Morrison up-
date� on each of these successive matrices. Recently, a de-
layed Green’s function updating algorithm14 was proposed
that reduced the computational complexity to O�kN� during
the k-th step �compare this with O�N2� required using
Sherman-Morrison update�. Using this delayed update algo-
rithm, the updated Green’s matrix is computed using the
efficient double-precision general matrix-matrix multiply
�DGEMM�15 rather than the expensive double-precision gen-
eral vector-vector outer product �DGER�15. This delayed up-
dating algorithm resulted in significant computational sav-
ings compared to traditional algorithms.

This paper presents a more efficient algorithm that is
faster than the competing delayed update algorithm used in
the simulation of the Hubbard model. Specifically, the pro-
posed submatrix update algorithm reduces the computational
complexity of computing the transition probability and
Green’s function update to O�k2� during the k-th step com-
pared to O�kN� complexity of delayed update scheme �the
prefactor is smaller�. When compared to traditional algo-
rithms based on Sherman-Morrison updates, the proposed
submatrix update algorithm is orders of magnitude faster
than those that use naive updating of the Green’s function
matrix. Note, however, that the systematic error due to time
discretization inherent to the HF and BSS QMC algorithms
is not removed by the proposed algorithm.

The organization of the paper is as follows. In Sec. II, we
present the computational problem and the traditional algo-
rithms that are used in the computation. Sec. III presents the
submatrix update algorithm and the comparison of these
various approaches are discussed in Sec. IV. Conclusions are
presented in Sec. V. In the following, we use the notation of
capital bold face letters to denote matrices and small bold
face letters to denote vectors.

II. TRADITIONAL ALGORITHMS

Whenever a local change in spins �sp�sp�� at site p is
proposed, the Green’s function matrix in the configuration
��k+1�th step� is given by

Gk+1 = Gk + �k�Gk�: ,p� − ep� � Gk�p, :� , �4�

where Gk and Gk+1 are the Green’s function matrices at the
kth and �k+1�th steps, Gk�: , p� and Gk�p , :� denote the pth
column and pth row of Gk respectively, ep
= �0, . . . ,1 , . . . ,0�t denotes a unit vector with 1 on the pth
entry and 0 everywhere else, � denotes the vector outer
product such that a � b=abt for any set of vectors a and b,
and

�k =
�k

1 + �1 − Gk�p,p���k
. �5�

In the above equation, Gk�p , p� is the p-th diagonal entry of
Gk and �k= �exp�−���sp−sp���−1�. The determinant of Gk+1
is given by

det�Gk+1� = det�Gk��1 + �k�Gk�p,p� − 1�	

= det�Gk��1 + �k�1 − Gk�p,p��	−1, �6�

and hence the ratio of determinants Rk is given by

Rk =
det�Gk+1�
det�Gk�

=
1

�1 + �k�1 − Gk�p,p��	
. �7�

Hence, for any given k, a trivial, straight-forward compu-
tation of Rk can be obtained in O�N2� computations by first
updating Gk�Gk+1 as in Eq. �4�, which requires O�N2�
computations for each Green’s function matrix update, and
then computing Rk using Eq. �7�. However, repetitive com-
putation of Rk during each of the MC simulation steps �for
k=0,1 ,2 , . . .� requires an efficient procedure to compute suc-
cessive Rk �or alternatively Gk�p , p��. Since we only require
the determinant ratio Rk to accept or reject a Monte Carlo
step, a delayed Green’s function update algorithm can be
adopted that would reduce the computational complexity of
evaluating Rk during the k-th step to O�kN� instead of O�N2�
required during the straight-forward updating of G using Eq.
�4�. The delayed updating algorithm for the �k+1�th step is
given by Algorithm 1. The additional storage requirements
during each step are two vectors of size N. In the Algorithm
1, symbol � denotes term-wise multiplication of vectors
such that c=a�b implies ci=aibi, where ai, bi, and ci denote
the ith components of vectors a, b, and c respectively. Also,
G0 in Algorithm 1 refers to the Green’s function at step 0 and
is not related to the bare Green’s function matrix.
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Algorithm 1 Delayed Green’s Function Updating Algorithm

1: Given G0 and d0=diag�G0�

2: Compute �k= �exp−���sp−sp��−1�
3: Compute R= 1

1+�1−dk�p���k

4: Compute �k=R�k

5: Set ak=G0�: , p�, and bk=G0�p , :�
6: for i=0 to k−1 do
7: Compute ak=ak+bi�p�ai

8: Compute bk=bk+ai�p�bi

9: end for

10: Update ak=�k�ak−ep�
11: Update dk=dk+ak�bk

Since the computational cost of kth step increases as
O�kN�, Algorithm 1 requires the occasional Green’s function
matrix updates. This is especially the case whenever the cost
of computing � additional steps �beyond the current k steps�
using Algorithm 1 becomes comparable to or exceeds the
cost of a matrix-matrix product involved in the Green’s func-
tion matrix update. At this stage, updating of Green’s func-
tion matrix is done by

Gq = G0 + Xq−1Yq−1
t , �8�

where Xq−1= �a0
a1
¯ 
aq−1�, Yq−1= �b0
b1
¯ 
bq−1�, and q
is the number of rank 1 updates allowed between the full
Green’s function matrix updates.

An alternative to the delayed Green’s function matrix up-
date algorithm may be formulated by expressing Eq. �4� as

Gk+1 = �I + ak � ep�Gk, �9�

where ak=�k�Gk�: , p�−ep�. Consequently, for each addi-
tional step, we require storage space for a vector ak of size N.
In addition, we need to store an index variable pk that maps
k� p. This can be conveniently stored by defining an index
vector p such that p�k�= p. Based on Eq. �9�, a recursive
scheme for computing Gk+1 may be formulated as

Gk+1 = �I + ak � ep�k�� . . . �I + a0 � ep�0��G0

= ��
j=0

k

�I + a j � ep�j��
G0. �10�

An O�kN� recursive algorithm based on Eq. �10� may be
formulated; however, similar to the delayed updating algo-
rithm, this algorithm will also require occasional Green’s
function matrix updates as k approaches N.

III. SUBMATRIX UPDATE ALGORITHM

In the following, we introduce an algorithm that reduces
the computational complexity during k-th step to O�k2� in-
stead of O�kN�. For k	N, this algorithm is expected to re-
sult in significant computational savings. For demonstration
purposes, it is convenient to describe the algorithm using the
inverse of the Green’s function matrices although such in-
verses are never actually computed. The main advantage of
such an approach is that the rank 1 updates of Green’s func-

tion matrices reduce to a single column update of the inverse
of Green’s function matrix. Let Ak=Gk

−1 and Ak+1=Gk+1
−1 .

Then, using Sherman-Morrison formula, Eq. �4� can be re-
written as

Ak+1 = Ak + �k�Ak�: ,p� − ep� � ep

= Ak + �kAk�: ,p� � ep − �kep � ep. �11�

The updating of Ak in Eq. �11� can be interpreted as a mul-
tiplication of pth column of Ak by �1+�k� followed by a
subtraction of �k from the pth diagonal element. Symboli-
cally we represent Eq. �11� as

Ak+1 = Ak + ��
�k

�

�

�

�

� − � 

p

− �k − − −








� , �12�

where the second term is understood to multiply the pth col-
umn of Ak by �k and the third term represents a nonzero pth
diagonal entry of �k.

Denoting Ãk=Ak+�kAk�: , p� � ep, which is equivalent to
updating the pth column of Ak by multiplying it by �1+�k�,
Eq. �11� can be rewritten as

Ak+1 = Ãk − �kep � ep. �13�

It should be noted that the inverse G̃k= Ãk
−1 is equivalent to

updating the pth row of Gk by dividing it by �1+�k�. Con-
sequently,

det�Ãk� = �1 + �k�det�Ak� , �14�

det�G̃k� =
1

�1 + �k�
det�Gk� . �15�

Based on Eq. �13�, the det�Ak+1� can be computed as

det�Ak+1� = det�Ãk�det�I − �kep
t Ãk

−1ep�

= det�Ak��1 + �k��1 − �kep
t G̃kep�

= det�Ak��1 + �k��1 −
�k

1 + �k
Gk�p,p��

= − det�Ak��k�Gk�p,p� −
1 + �k

�k
� . �16�

Based on the above description, a recursive update of
Green’s function matrix Gk+1 over �k+1� steps may be for-
mulated as an update of Ak+1 as

Ak+1 = A0 + �
j=0

k

� j�A0�: ,p�j�� − ep�j�	 � ep�j�

= Ãk − �
j=0

k

� jep�j� � ep�j� = Ãk − XkYk
t , �17�
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where p is the index vector as defined before, Xk
= ��0ep�0�
¯ 
�kep�k�� and Yk= �ep�0�
¯ 
ep�k��, which are
never actually stored but are used here as a notational con-
venience. Symbolically, this translates to

Ak+1 = A0 + ��
�0

�
�k

� �

� . . . �

� �

� �

� − � 

p�0�



p�k�

− �0 − − −


 

− − − �k −


 

� .

�18�

Following earlier description, we have G̃k= Ãk
−1, which is

obtained by dividing each of the p�j� rows of G0 by �1
+� j�, and

det�Ãk� = ��
j=0

k

�1 + � j�
det�A0� , �19�

det�G̃k� = ��
j=0

k
1

�1 + � j�

det�G0� . �20�

Based on Eq. �17� and noting that G̃k= Ãk
−1, the det�Ak+1�

can be expressed as

det�Ak+1� = det�Ãk�det�I − Yk
t G̃kXk� . �21�

For notational convenience, let us define G̃k�p� as

G̃k�p� = �G̃0�p�0�,p�0�� . . . G̃0�p�0�,p�k��
] � ]

G̃0�p�k�,p�0�� . . . G̃0�p�k�,p�k��
� . �22�

The matrix Gk�p� is defined similarly. Using this notation,
we have

det�I − Yk
t G̃kXk� = det�I − G̃k�p���0

�

�k
��

= det�I − �
1

1 + �0

�

1

1 + �k

�Gk�p�

���0

�

�k
�� , �23�

which is further simplified as

det�I − Yk
t G̃kXk� = �− 1�k+1��

j=0

k
� j

1 + � j
�det��k� , �24�

where

�k =�
G0�p�0�,p�0�� −

1 + �0

�0
. . . G0�p�0�,p�k − 1�� G0�p�0�,p�k��

] � ] ]

G0�p�k − 1�,p�0�� . . . G0�p�k − 1�,p�k − 1�� −
1 + �k−1

�k−1
G0�p�k − 1�,p�k��

G0�p�k�,p�0�� . . . G0�p�k�,p�k − 1�� G0�p�k�,p�k�� −
1 + �k

�k

� . �25�

It should be noted that �k, which is obtained by subtract-

ing a diagonal matrix with entries
1+�i

�i
for i=0,1 ,2 , . . . ,k

from Gk�p�, is never really computed or stored; instead, it is
stored in the form of a LU decomposition, which readily
enables the computation of det��k� in Eq. �24�. Once we
have an LU decomposition of Gk�p�, the determinant of
Gk�p� is equal to the product of diagonal entries of U factor.
Moreover, as shown below, it is relatively straightforward to
update the LU factors of Gk�p� as k increases.

Symbolically, let us represent �k as

�k = ��k−1 s

wt d

 = �Lk−1 0

xt 1

�Uk−1 y

0 


 , �26�

where s=G0�p�0� :p�k−1� ,p�k��, wt=G0�p�k� ,p�0� :p�k
−1��, and d=G0�p�k� ,p�k��−

1+�k

�k
. Assuming that we have a

LU decomposition of �k−1=Lk−1Uk−1, the LU factorization
of �k=LkUk can be obtained in O�k2� operations by solving
Lk−1y=s, Uk−1

t x=w, and d=
+xty. The det��k� is then given
by

det��k� = 
 det��k−1� . �27�

NUKALA et al. PHYSICAL REVIEW B 80, 195111 �2009�

195111-4



Combining Eqs. �19�, �21�, and �24�, det�Ak+1� can be
expressed as

det�Ak+1� = �− 1�k+1��
j=0

k

� j�det�A0�det��k� = − 
�k det�Ak� .

�28�

Hence, Rk=− 1

�k

, which is the desired result for computing
the acceptance rate.

The submatrix update algorithm for the k-th step is pre-
sented in Algorithm 2, where we have used the short-hand
notation Lk−1 for L�1:k−1,1 :k−1� and Uk−1 for U�1:k
−1,1 :k−1�. During the kth step, Lk and Uk are updated as
given by Eq. �26�.

Algorithm 2 Sub-Matrix Update Algorithm during k-th step
�sp�sp��

1: Given G0, and index vector p up to k−1 steps

2: Set p�k�= p

3: Compute �k= �exp−���sp−sp��−1�
4: Set s=G0�p�0� :p�k−1� , p�
5: Set wt=G0�p ,p�0� :p�k−1��
6: Set d=G0�p , p�−

1+�k

�k

7: Solve Lk−1y=s
8: Solve Uk−1

t x=w
9: Compute 
=d−xty
10: Compute Rk=− 1


�k

11: If the move is accepted, set L�k ,1 :k−1�=xt and
U�1:k−1,k�=y

It should be noted that the L and U factors in Algorithm 2
are only updated if the move is accepted, in which case
k�k+1. If not, k is not incremented and another Monte
Carlo step is considered. We also note that the computation
of Rk �alternatively, the acceptance rate� using Algorithm 2 is
O�k2� and is not constant in time as in traditional Hirsch-Fye
algorithm.

In addition, similar to the delayed updating algorithm, the
submatrix update algorithm also requires occasional Green’s
function matrix updates since the computational cost of the
submatrix update algorithm increases as k approaches N. Us-
ing Eq. �17�, the Green’s function matrix Gq=Aq

−1 after q
number of updates is given by

Gq = Aq
−1 = �Ãq−1 − Xq−1Yq−1

t �−1

= Ãq−1
−1 + Ãq−1

−1 Xq−1�I − Yq−1
t Ãq−1

−1 Xq−1�−1Yq−1
t Ãq−1

−1 ,

�29�

where we have used the Sherman-Morrison-Woodbury
formula13 in the last expression. After much simplifying, Eq.
�29� can be shown to be

Gq = D1+�
−1 �G0 − G0�: ,p��q−1

−1 G0�p, :�� , �30�

where �q−1
−1 =Uq−1

−1 Lq−1
−1 is never really computed but used as a

forward substitution �a lower triangular solve, see Ref. 13 for
details� with Lq−1 and a backward elimination �an upper tri-

angular solve, see Ref. 13 for details� with Uq−1, G0�: ,p�,
and G0�p , :� denote respectively the columns and rows of G0
referred by the index array p, and D1+�

−1 is a unit diagonal
matrix except for the entries of

D1+�
−1 �p�k�,p�k�� =

1

1 + �k
. �31�

The computational cost of each of the submatrix updates is
O�k2�, which implies that the total computational cost of k
steps is O�k3�. However, the cost of resetting the Green’s
function matrix after q number of updates as in Eq. �30� is
dominated by matrix-matrix multiplication whose computa-
tional cost is O�qN2�.

IV. NUMERICAL RESULTS

In order to compare the computational efficiencies of tra-
ditional �Sherman-Morrison�, delayed �Algorithm 1�, and
submatrix update �Algorithm 2� algorithms, we test these
algorithms on a randomly generated matrix G0. That is, since
the algorithms are applicable for general matrices, we start
with a matrix G0 whose elements are randomly chosen be-
tween 0 and 1. Then we consider rank 1 updates of G0 as
given by Eq. �4� for m number of steps. The site locations p
are randomly chosen for these m steps. Table I presents the
computational timings obtained using the traditional full ma-
trix updates via Sherman-Morrison formula, delayed updates
and proposed updates via Algorithm 2. These results are pre-
sented for matrix sizes N=1000 and N=3000 with updates
carried for m=100 and m=300 steps, respectively. The re-
sults are averaged over 100 simulations to achieve sufficient
accuracy in the timing of these algorithms. These results in-
dicate that the submatrix update algorithm is significantly
faster than the delayed update algorithm, which in turn is
significantly faster than the naive updating of the Green’s
matrices using the Sherman-Morrison formula. We note that
exactly the same determinant ratios �Rk for k=0,1 ,2 , . . .� are
obtained using each of the algorithms. In fact, the maximum
difference between Rk for any k=0,1 ,2 , . . . is of the order of
10−16.

Although the above example does not consider multiple
lattice sweeps �in fact m�N�, it demonstrates the computa-
tional advantage that one could expect using the submatrix
update algorithm whenever the average acceptance ratio in a
MC simulation is small. In this sense, the above example
only compares the computational cost of spin flip operations.
The cost of the Green’s function updates is not considered in
this example. A more realistic Hubbard model simulation
that includes the cost of the Green’s function updates is con-
sidered below. In the following, we consider a typical 16-site

TABLE I. Computational cost �seconds� of various
algorithms.

Size Full Delayed Proposed

1000 7.023�0.005 0.277�0.004 0.015�0.001

3000 194.76�0.23 9.86�0.01 0.49�0.005
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dynamic cluster quantum Monte Carlo simulation5 of a two-
dimensional Hubbard model with hopping t and Coulomb
repulsion U=4t. The inverse temperature 
= 40

t . Here we
used 300 time slices. In this case the initial Green’s function
corresponds to the noninteracting cluster embedded in a
mean-field host and is given by a dense matrix of size N
=4800. Since we are interested in the explicit comparison of
different algorithms, we ran our tests using both delayed and
submatrix algorithms with exactly the same initial condi-
tions. These simulations account for both spin flips acceptan-
ces and rejections. Our simulations give identical results for
both delayed and submatrix algorithms; however, the time to
completion using submatrix algorithm is shorter than that
using the delayed algorithm.16 For comparison purposes, we
did not consider the simulation using the traditional algo-
rithm �Sherman-Morrison formula� since it requires a signifi-
cant CPU time for each of the MC steps. Hence, the subma-
trix update algorithm is compared with the delayed update
algorithm as presented in Algorithm 1.

Since the computational cost of kth MC step increases as
k approaches N, we chose to update the Green’s function
matrix explicitly after a chosen q number of updates. That is,
in the case of delayed update algorithm, we update G0 to
Gq=G0+Xq−1Yq−1

t using Eq. �8� after q number of updates.
After each q number of updates, the process is reset with
Gq�G0 and k=0. This resetting is done by matrix-matrix
multiplication and requires O�qN2� operations. In the case of
submatrix update algorithm, the updating is done by Eq.
�30�, which again involves a matrix-matrix multiplication
with a leading order of O�qN2� computations.

Figure 1 presents the CPU times taken by delayed and
submatrix update algorithms for one complete lattice sweep.
The timing results indicate that the submatrix algorithm is
faster than the delayed update algorithm and that its compu-
tational cost does not increase with the reset size q. More-
over, Fig. 1�b� presents a detailed representation of CPU
times taken by delayed and submatrix algorithms. The data
indicate that the time taken for spin flip operations increases
linearly for delayed algorithm while it remains constant and
is extremely cheap for submatrix algorithm. On the contrary,
the computational cost of the Green’s function update is
comparable for both algorithms, albeit delayed algorithm is
faster due to less number of operations. A breakdown of
operational cost of updating the Green’s function matrix us-
ing the submatrix algorithm �Eq. �30�� is presented in Fig. 2.
In this stacked chart, the additional computational cost of
submatrix algorithm due to each of the left-hand side solve
�Lk

−1G0�p , :��, right-hand side solve �G0�: ,p�Uk
−1�, and diag-

onal scaling with D1+�
−1 are clearly shown. However, as ex-

pected, the computational cost associated with DGEMM
would be same as that associated with delayed algorithm.
Despite this additional computational cost in updating the
Green’s function matrix, the submatrix algorithm is faster
overall due to significant efficiency gained during the spin
flip operations.

V. CONCLUSIONS

We present an efficient algorithm for computing the tran-
sition probability in QMC simulations of strongly correlated

systems using the Hubbard model. The algorithm takes ad-
vantage of low-rank updates to the Green’s function matrix
in developing an efficient method to compute the transition
probabilities. The present algorithm reduces the computa-
tional complexity of the kth MC step to O�k2� compared to
either O�kN� complexity using the competing delayed updat-
ing algorithm, or O�N2� complexity using the traditional
�Sherman-Morrison formula� updating schemes. The present
algorithm is faster than the delayed updating scheme in terms
of time to completion, and is orders of magnitude faster than
the traditional schemes. Moreover, the computational cost of
the present algorithm remains constant over a broad range of
number of updates �q� between the Green’s function resets,
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FIG. 1. �Color online� �a� CPU times taken by delayed and
submatrix update algorithms for one complete lattice sweep for a
variety of reset sizes q. System size is N=4800 and the total number
of lattice site spin flips is m=4800. The Green’s function matrix is
updated every q steps. It is clear that the computational cost of
submatrix algorithm is almost constant with the reset size q,
whereas the cost of delayed algorithm increases linearly with reset
size q. �b� A detailed representation of CPU times taken by delayed
and submatrix algorithms. Figure shows the total CPU time taken
for spin flip operations and the Green’s function updates for a given
reset size q. The time taken for spin-flip operations increases lin-
early for delayed algorithm while it remains constant and is ex-
tremely cheap for submatrix algorithm. On the contrary, the com-
putational cost of the Green’s function update is comparable for
both algorithms, albeit delayed algorithm is faster due to less num-
ber of operations.
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which is in contrast with the delayed update algorithm. Fur-
thermore, the algorithm can benefit from using effective
bounds for the transition probability, which will further in-
crease the efficiency of the algorithm. Estimation of these
tighter bounds for transition probability will be considered in
the future work.
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APPENDIX

The algorithms presented earlier are derived for the case
in which the Green’s function matrix �Eq. �4�� is derived
using a re-exponentiation formulation. Such a step involves
an error of the order of �
��2. Alternatively, using the origi-
nal form of G, the updating can be written as

Gk+1 = Gk + �kGk�: ,p� � Gk�p̃, :� , �A1�

which can be rewritten as

Ak+1 = Ak − �kep � ep̃. �A2�

This can be interpreted as a subtraction of �k from the �p , p̃�
element of the Ak matrix. Symbolically, Eq. �A2� can be
represented as

Ak+1 = Ak − �
p̃



− �k − − p






� . �A3�

Based on the above description, after k+1 number of up-
dates, Ak+1 can be expressed as

Ak+1 = A0 − �
j=0

k

� jep�j� � ep̃�j� = A0 − XkYk
t , �A4�

where p is the index vector as defined before, Xk
= ��0ep�0�
 . . . 
�kep�k�� and Yk= �ep̃�0�
 . . . 
ep̃�k��. Symbolically,
this translates to

Ak+1 = A0 − �
p̃�0� p̃�k�


 

− �0 − − − p�0�


 

− − − �k − p�k�


 

� . �A5�

Based on Eq. �A5� and noting that G0=A0
−1, the det�Ak+1�

can be expressed as

det�Ak+1� = det�A0�det�I − Yk
t G0Xk� . �A6�

For notational convenience, let us define Gk�p̃ ,p� as

Gk�p̃,p� = �G0�p̃�0�,p�0�� . . . G0�p̃�0�,p�k��
] � ]

G0�p̃�k�,p�0�� . . . G0�p̃�k�,p�k��
� .

�A7�

Using this notation, we have

det�I − Yk
t G0Xk� = det�I − Gk�p̃,p���0

�

�k
�� ,

�A8�

which is further simplified as

det�I − Yk
t G0Xk� = �− 1�k+1��

j=0

k

� j�det��k� , �A9�

where
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FIG. 2. �Color online� Further breakdown of CPU times taken
by the submatrix algorithm in updating the Green’s function update
�Eq. �30��. In the legend, LHS solve and RHS solve refer to
Lk

−1G0�p , :� and G0�: ,p�Uk
−1 operations, respectively, and diagonal

scaling refers to multiplication by D1+�
−1 . These are the additional

costs associated with submatrix algorithm. The computational cost
associated with DGEMM would be same as that associated with
delayed algorithm.
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�k =�
G0�p̃�0�,p�0�� −

1

�0
. . . G0�p̃�0�,p�k − 1�� G0�p̃�0�,p�k��

] � ] ]

G0�p̃�k − 1�,p�0�� . . . G0�p̃�k − 1�,p�k − 1�� −
1

�k−1
G0�p̃�k − 1�,p�k��

G0�p̃�k�,p�0�� . . . G0�p̃�k�,p�k − 1�� G0�p̃�k�,p�k�� −
1

�k

� . �A10�

Symbolically, let us represent �k as

�k = ��k−1 s

wt d

 = �Lk−1 0

xt 1

�Uk−1 y

0 


 , �A11�

where s=G0�p̃�0� : p̃�k−1� ,p�k��, wt=G0�p̃�k� ,p�0� :p�k
−1��, and d=G0�p̃�k� ,p�k��− 1

�k
. Assuming that we have a

LU decomposition of �k−1=Lk−1Uk−1, the LU factorization
of �k=LkUk can be obtained in O�k2� operations by solving
Lk−1y=s, Uk−1

t x=w, and d=
+xty. The det��k� is then given
by

det��k� = 
 det��k−1� �A12�

Combining Eqs. �A6� and �A10� , det�Ak+1� can be expressed
as

det�Ak+1� = �− 1�k+1��
j=0

k

� j�det�A0�det��k� = − 
�k det�Ak� .

�A13�

Hence, Rk=− 1

�k

.

The corresponding algorithm is presented in Algorithm 3.

Algorithm 3 Proposed Algorithm during k-th step �sp�sp��

1: Given G0, and index arrays p and p̃ up to k−1 steps

2: Set p�k�= p and p̃�k�= p̃

3: Compute �k= �exp−���sp−sp��−1�
4: Set s=G0�p̃�0� : p̃�k−1� , p�
5: Set wt=G0�p̃ ,p�0� :p�k−1��
6: Set d=G0�p̃ , p�− 1

�k

7: Solve Lk−1y=s
8: Solve Uk−1

t x=w
9: Compute 
=d−xty
10: Compute Rk=− 1


�k

11: If the move is accepted, set L�k ,1 :k−1�=xt and
U�1:k−1,k�=y
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